Transgenic Strategies for Sparse but Strong Expression of Genetically Encoded Voltage and Calcium Indicators
نویسندگان
چکیده
Rapidly progressing development of optogenetic tools, particularly genetically encoded optical indicators, enables monitoring activities of neuronal circuits of identified cell populations in longitudinal in vivo studies. Recently developed advanced transgenic approaches achieve high levels of indicator expression. However, targeting non-sparse cell populations leads to dense expression patterns such that optical signals from neuronal processes cannot be allocated to individual neurons. This issue is particularly pertinent for the use of genetically encoded voltage indicators whose membrane-delimited signals arise largely from the neuropil where dendritic and axonal membranes of many cells intermingle. Here we address this need for sparse but strong expression of genetically encoded optical indicators using a titratable recombination-activated transgene transcription to achieve a Golgi staining-type indicator expression pattern in vivo. Using different transgenic strategies, we also illustrate that co-expression of genetically encoded voltage and calcium indicators can be achieved in vivo for studying neuronal circuit input-output relationships.
منابع مشابه
Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator.
Genetically encoded calcium indicators, such as cameleon, have offered the promise of noninvasively monitoring activity of neurons, but no one has demonstrated whether these indicators can report calcium transients in neurons of behaving vertebrates. We show that cameleon can be expressed at high levels in sensory and spinal cord neurons in zebrafish by using neural-specific promoters in both t...
متن کاملTransgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance
UNLABELLED An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high...
متن کاملGeneration of transgenic marmosets expressing genetically encoded calcium indicators
Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to expr...
متن کاملImaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of ce...
متن کاملMonitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters
The advent of the human-induced pluripotent stem cell (hiPSC) technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPS...
متن کامل